SEMISTER –II				
Code: 202102		Title : Organic Chemistry	hemistry Crea	
Obj	ectives :			
1. To	describe various reacti	ons involved in addition to C-C and C-	-O double bond	
2. To	Explain aromatic nucle	ophilic substitution reactions		
3. To	demonstrate/apply the	concepts involved in oxidation & red	duction reactions	5.
4. To	describe the basic cond	epts in aromaticity.		•
Paper -I				60 Hours
Unit I	Aromatic Electrophi	lic and Nucleophilic Substitutions El	lectrophilic	15 Lectures
	Substitutions:-			
	The arenium ion mechanisum, orientation and reactivity, energy profile			
	diagram. The ortho/para ratio, IPSO substitution, orientation in other			
	ring system, Recapitulation of halogenation, nitration, sulphonation and			
	Fridel Craft's reaction, diazonium coupling. Nucleophilic Substitution:			
	The SNAr, SN1 , benzyne mechanisum, Effect of substrate structure,			
	leaving group and attacking nucleophile on reactivity.			
Unit II	Addition to Carbon –Carbon multiple bond:-			15 Lectures
	Mechanism and stereochemical aspect of addition reaction involving			
	electrophile, nucleophile and free radicals. Regioselectivity and			
	chemoselectivity, orientation and reactivity, Michael addition, Sharpless			
	asymmetric epoxidation.			
Unit III	Oxidation and Redu			15 Lectures
) PDC, PCC, KMnO4, MnO2 , Swern, S	• •	
	OAc)4, Pd/C, OsO4, mCPBA, O3, NalO4, HIO4 R3 SiH, Bu3SnH, Boranes &			
		ons, MVP, H2/ catalyst, Wilkinson's c	catalyst,	
11	NaCNBH3, NH2NH2,	DIBAL, etc		15 1
Unit IV	Aromaticity: -			15 Lectures
		rmochemical, and magnetic criteria f	• •	
	-	cteristics of aromatic systems. Deloc		
		oplication of HMO theory to monocy lin diagrams. Huckel's (4n+2) and 4n		
		omatic compounds up-to 18 carbon a		
		ounds. Aromaticity of all benzenoid		
		ocenes, azulenes, annulenes, aromati	•	
	Fullerene .	seenes, azarenes, annulenes, aronnati		

Reference Books :

- 1. Advanced Organic Chemistry, IV Edition: J. March
- 2. Advanced organic Chemistry, Part-A and Part-B: F. A. Carey, & R. J. Sundburg.
- 3. A Guide Book to Mechanism in Organic Chemistry: Peter Sykes.
- 4. Organic Chemistry: Clayden and Greeves
- 5. March's Advanced Organic Chemistry: Reactions, Mechanisms and Structure, Michael B. Smith, Jerry March, Wiley
- 6. Advanced Organic Chemistry: Reactions and mechanism, L.G. Wade, Jr., Maya Shankar Singh, Pearson Education.
- 7. Organic Synthesis, Jagdamba Singh, L.D.S. Yadav, Pragati Prakashan.